Free, open-source online mathematics for students, teachers and workers

Compute the following limit


This limit involves summing up $n$ quantities that range between 0 and 1 (being the cosine to the fourth power) and dividing the sum by $n$ - like taking the average. Now the average must range between 0 and 1 too, but it is not clear whether it becomes stable as $n$ grows bigger and bigger.

The key for this limit is to realize that this sum, when multiplying $\frac{1}{n}$ to all the terms,


is indeed a multiple of the Riemann sum for the function $f(x)=\cos(x)^4$. To identify the associated interval and partition, let's rewrite everything in terms of this function


with $x_k=\frac{k\pi}{2n}$, $k$ from $1$ to $n$. These points seem to fit nicely into the interval $\left[0,\frac{\pi}{2}\right]$ with the partition $P=\left\{x_0=0,x_1=\frac{\pi}{2n},x_2=\frac{2\pi}{2n},\cdots,x_n=\frac{n\pi}{2n}\right\}$. The points in this partition are equally spaced and the distance between points is $\frac{\pi}{2n}$ - very similar to $\frac{1}{n}$! So tidying up everything, if




is exactly the Riemann sum associated to the partition mentioned before and using the right endpoint

var('x') def riemann_sum(f,interval,number_of_subdivisions,endpoint_rule): a, b = map(QQ, interval) t = sage.calculus.calculus.var('t') func = fast_callable(f(x=t), RDF, vars=[t]) dx = QQ(b-a)/QQ(number_of_subdivisions) xs = [] ys = [] for q in range(number_of_subdivisions): if endpoint_rule == 'Left': xs.append(q*dx + a) elif endpoint_rule == 'Midpoint': xs.append(q*dx + a + dx/2) elif endpoint_rule == 'Right': xs.append(q*dx + a + dx) elif endpoint_rule == 'Upper': x = find_local_maximum(func, q*dx + a, q*dx + dx + a)[1] xs.append(x) elif endpoint_rule == 'Lower': x = find_local_minimum(func, q*dx + a, q*dx + dx + a)[1] xs.append(x) ys = [ func(x) for x in xs ] rects = Graphics() for q in range(number_of_subdivisions): xm = q*dx + dx/2 + a x = xs[q] y = ys[q] rects += polygon([(xm-dx/2,0), (xm-dx/2,y), (xm+dx/2,y), (xm+dx/2,0)], color="#90CAF9", edgecolor="#2196F3", thickness=2) rects += point((x, y), marker='o', rgbcolor='#FFE082', markeredgecolor='#FFC107', size=40, zorder=3) min_y = min(0, find_local_minimum(func,a,b)[0]) max_y = max(0, find_local_maximum(func,a,b)[0]) return plot(func,(x,a,b), thickness=4, color='#1565C0', xmin = a, xmax = b, ymin = min_y, ymax = max_y) + rects packing = [riemann_sum(cos(x)^4,[0,3.1415/2],s,'Right') for s in range(4,21)] animate(packing)

and therefore

$$\frac{\pi}{2}S_n\longrightarrow\int_0^{\frac{\pi}{2}}\cos(x)^4=\left[\frac{3}{8}x + \frac{1}{32}\sin(4x) + \frac{1}{4}\sin(2x)\right]_0^{\frac{\pi}{2}}=\frac{3\pi}{16}$$

and readjusting,

$$S_n\longrightarrow \frac{3}{8}$$